

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Assignment of the ^1H and ^{13}C NMR Spectra of a New Antibacterial Bisabolane Sesquiterpene by Two-Dimensional NMR Techniques

Jian-Chun Liao^a; Li Yang^a; Zhong-Jian Jia^a

^a National Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou, P.R. China

To cite this Article Liao, Jian-Chun , Yang, Li and Jia, Zhong-Jian(2000) 'Assignment of the ^1H and ^{13}C NMR Spectra of a New Antibacterial Bisabolane Sesquiterpene by Two-Dimensional NMR Techniques', *Spectroscopy Letters*, 33: 2, 235 – 243

To link to this Article: DOI: 10.1080/00387010009350073

URL: <http://dx.doi.org/10.1080/00387010009350073>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

**ASSIGNMENT OF THE ^1H AND ^{13}C NMR SPECTRA OF A NEW
ANTIBACTERIAL BISABOLANE SESQUITERPENE BY TWO-
DIMENSIONAL NMR TECHNIQUES**

Key Words : *Ligularia thyrsoidea*; Compositae; bisabolane; sesquiterpene; antibacterial activity.

Jian-Chun Liao, Li Yang and Zhong-Jian Jia*

*National Laboratory of Applied Organic Chemistry, Department of Chemistry,
Lanzhou University, Lanzhou 730000, P.R. China*

ABSTRACT

A new antibacterial bisabolane sesquiterpene, 1β -acetoxy- $2\beta,8$ -diangeloyloxy- 3β -hydroxy- 4α -chloro- $10,11$ -epoxybisabol-7(14)-ene (1), was isolated from *Ligularia thyrsoidea* and its structure was elucidated by 2D NMR techniques.

INTRODUCTION

Ligularia species (Compositae) have been used as folk remedies with antibiotic, antiphlogistic and antitumor activities [1]. In continuation of our research on the genus *Ligularia* in northwestern China [2,3], now we have examined the whole plants of *L. thyrsoidea* which afforded a new chlorine-bearing

* Address correspondence to Prof. Zhong-Jian Jia

bisabolane sesquiterpenes. A combination of ^1H - ^1H COSY, ^1H - ^1H NOESY, HMQC and HMBC spectra enabled us to deduce its structure and to assign completely its ^1H and ^{13}C NMR spectra. Antibacterial bioassay indicated that this compound inhibited the growth of human pathogenic bacteria *Escherichia coli*, *Bacillus subtilis*, and especially *Pseudomonas aeruginosa*.

EXPERIMENTAL

The plant material was collected in Tiaoshan, Xingjiang province in August 1994. It was identified by Prof. Guo-Liang Zhang of Lanzhou University and a voucher specimen(No: 94961) is deposited in the Herbarium of our institute. IR spectra were recorded on a **Nicolet** 170SX FTIR spectrometer. EIMS were obtained on HP-5988A MS. NMR experiments were run on a Bruker AM-400 FT-NMR with TMS as internal standard. The air-dried whole plants of *L. thyrsoidea* (4.0 Kg) were powdered and extracted with petrol (60-90°)-Et₂O-MeOH (1:1:1) at room temp. and gave 130 g of residue after removal of the solvent. The residue was separated on a silica gel column over 1.2 kg silica gel (200-300 mesh) eluting with a gradient of petrol-actone (20:1-2:1, 200 ml each eluent). From the fraction of petrol-actone 6:1, **1** (100 mg) was obtained by repeated CC on silica gel with petrol-EtOAc (6:1).

Antibacterial activity:

Compound **1** was screened for its antibacterial activity. Four pathogenic bacterial viz., *Escherichia coli*, *Bacillus subtilis*, *Staphylococcus aureus*, and *Pseudomonas aeruginosa* were employed for antibacterial activity. Cup-plate method was followed for the screening. The antibacterial activity was compared with standard chloramphenicol.

The results of antibacterial activity indicate that compound **1** has shown strong activity against *Ps. aeruginosa* which was superior to the standard chloramphenicol and also shown considerable activity against *E. coli* and *B. subtilis*. But compound **1** has shown no inhibition against *Staph. aureus*.

RESULTS AND DISCUSSION

Compound **1** was isolated as colorless gum and had IR absorptions indicative of a hydroxyl group (3559cm^{-1}), ester groups (1750 1718cm^{-1}) and double bond (1648cm^{-1}). The EI mass spectrum of **1** showed that one chlorine atom presented in **1** for a series of characteristic isotopic ion peaks at $m/z = 528$, $526[\text{M}]^+$; 510 , 508 ; 468 , 466 ; 457 , 455 , etc. (their relative abundance ratios were about 1:3). The molecular formula of **1** could be determined as $\text{C}_{27}\text{H}_{39}\text{O}_8\text{Cl}$ in combination with NMR data, one acetoxy group and two angeloyloxy groups [4,5] existed in **1** also discerning from ^1H and ^{13}C NMR data (see FIG 1). The signals of oxygen-bearing carbons at δ 57.7 (C) and 60.7 (CH) together with the proton signal at δ 2.70 (1H, t, $J = 5.5$ Hz) indicated an epoxy group existed in compound **1** [6]. Except for all these groups and to accommodate 8 degrees of unsaturation, compound **1** was proposed to be a monocyclic sesquiterpene skeleton with a terminal double bond ($\delta_{\text{H}} = 5.28$, 5.03 each 1H, br s; $\delta_{\text{C}} = 144.7$ C, 116.1 CH₂).

The HMQC spectrum of **1** (see FIG 2) revealed the cross peaks between the carbon signals at δ 73.4 (C-1, CH), 70.0 (C-2,CH), 64.4 (C-4, CH), 29.4 (C-5, CH₂), 34.4 (C-6, CH), 74.5 (C-8, CH), 32.8 (C-9, CH₂), 60.7 (C-10, CH), and the corresponding proton signals at δ 5.48 (H-1), 5.25 (H-2), 4.16 (H-4), 2.61 (H-5 β), 1.77 (H-5 α), 3.10 (H-6), 5.50 (H-8), 2.01 (H-9a), 1.85 (H-9b), 2.70 (H-10), respectively. In the ^1H - ^1H COSY spectrum (see FIG 3), strong cross peaks were found: H-1 (δ 5.48 , dd, $J = 3.3$, 3.0 Hz) with H-2 (δ 5.25 , d, $J = 3.3$ Hz) and H-6(δ 3.10 , ddd, $J=13.2$, 3.0 , 2.9 Hz), H-6 with H-5 β (δ 2.61 , ddd, $J=14.9$, 13.2 , 2.9 Hz) and H-5 α (δ 1.77 , m), H-4(δ 4.16 , t, $J = 2.9$ Hz) with 5 β and H-5 α , 5 β with H-5 α , H-8 (δ 5.50 , t, $J = 7.0$ Hz) with H-9a(δ 2.01 , m) and H-9b (δ 1.85 , m), H-10 (δ 2.70 , t, $J = 5.5$ Hz) with H-9a and H-9b. Thus two main structure sequences of compound **1** were determined: -H₈-H_{9a},H_{9b}-H₁₀- and -H₂-H₁-H₆-H_{5 α} ,H_{5 β} -H₄-. Its skeleton was determined by connection of HMBC (FIG 4) due to the ^2J and ^3J couplings: C-1/H-2, C-2/H-1, 4, 15; C-3/H-4, 15; C-7/H-6, 8, 14; C-10/H-8, 9, 12,

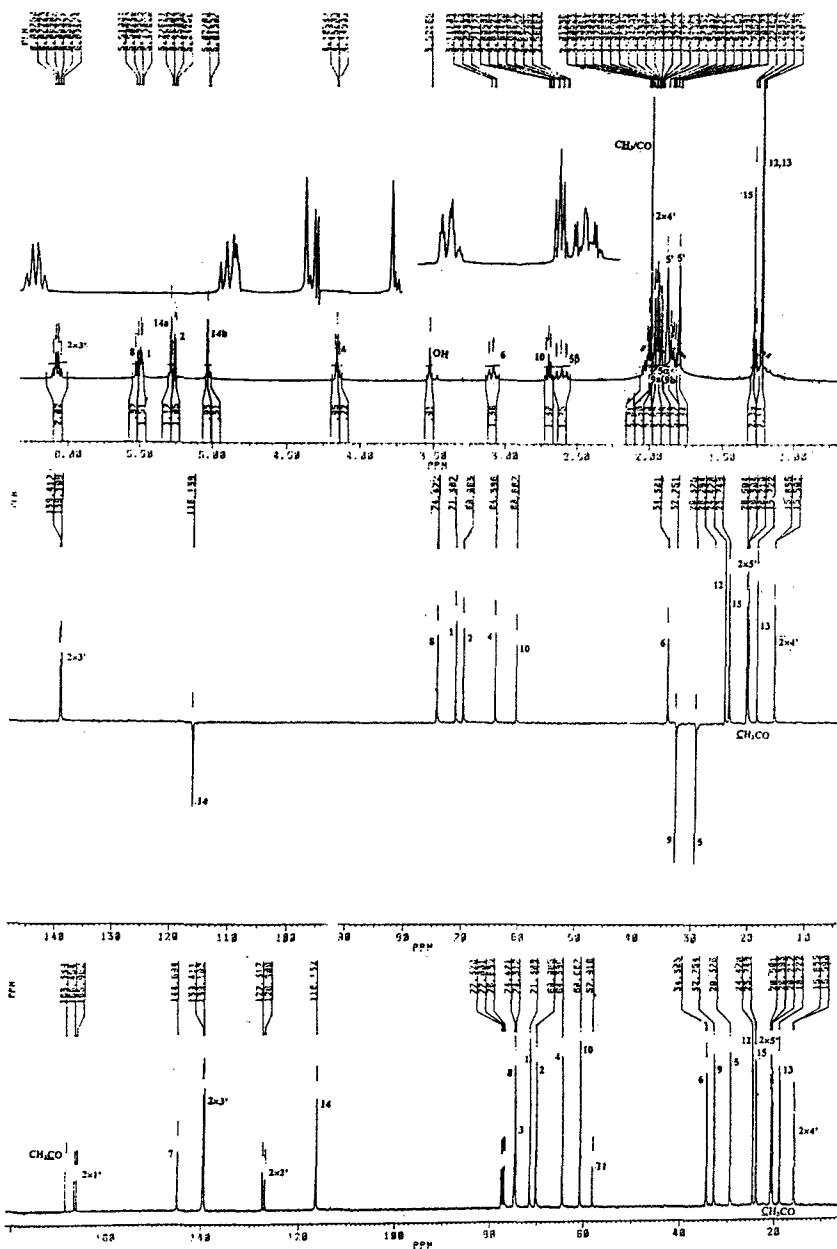


FIG 1. ^1H , ^{13}C NMR and DEPT spectra of compound 1

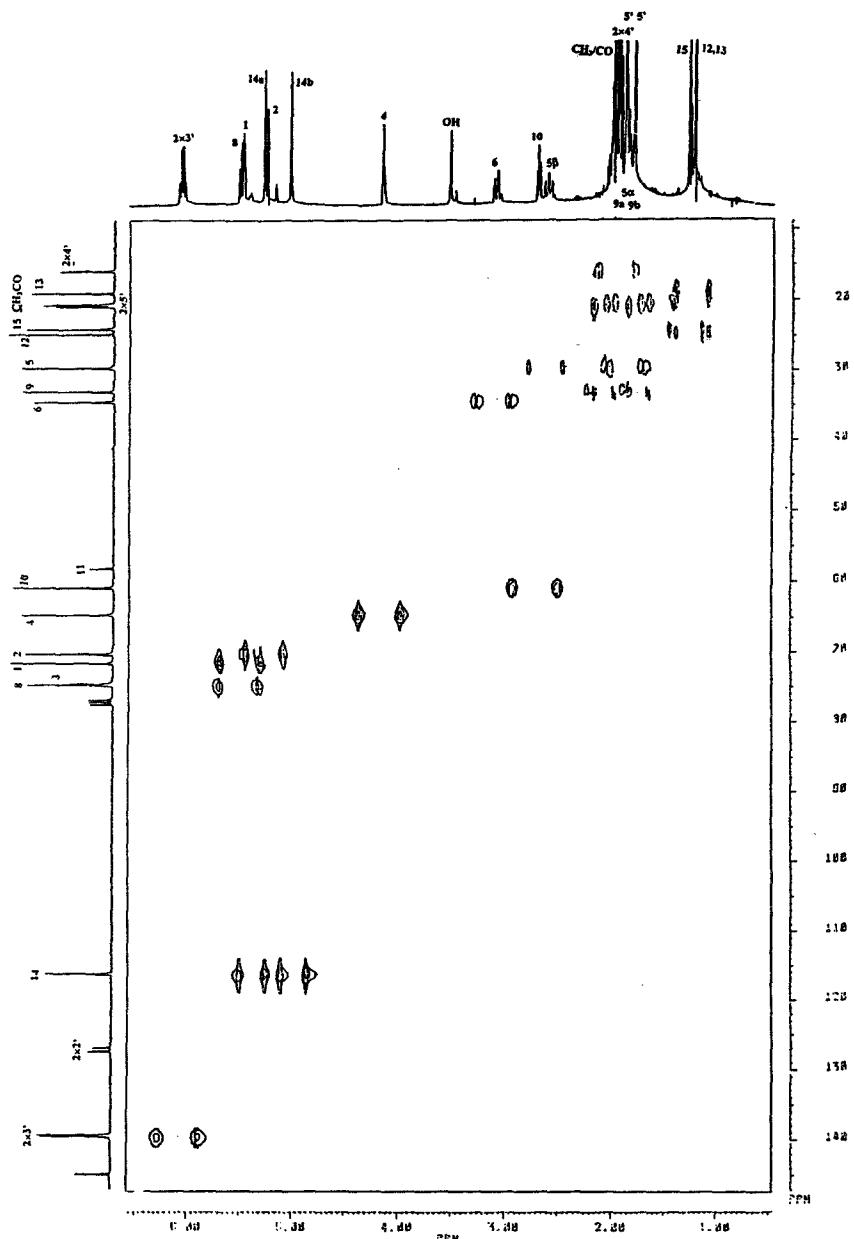


FIG 2. HMQC spectrum of compound 1

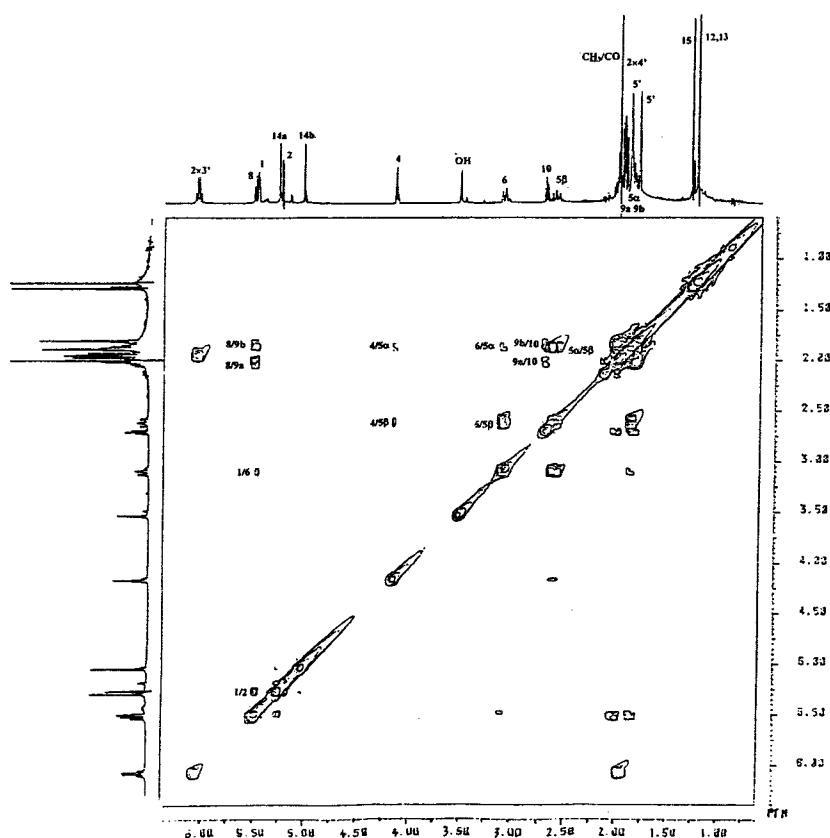


FIG 3. ^1H - ^1H COSY spectrum of compound 1

13; C-11/H-9, 10, 12, 13. Thus compound 1 was determined as a bisabolane sesquiterpene [6,7] with an epoxy group at C-10 and C-11. The locations of the three ester groups were also deduced from HMBC spectrum (FIG 4) : δ 168.3/H-1 and COCH_3 (1.99, 3H, s), δ 166.5/H-2 and δ 166.0/H-8, so designing the acetoxy group to C-1 and two angeloyloxy groups to C-2 and C-8. The HMBC spectrum

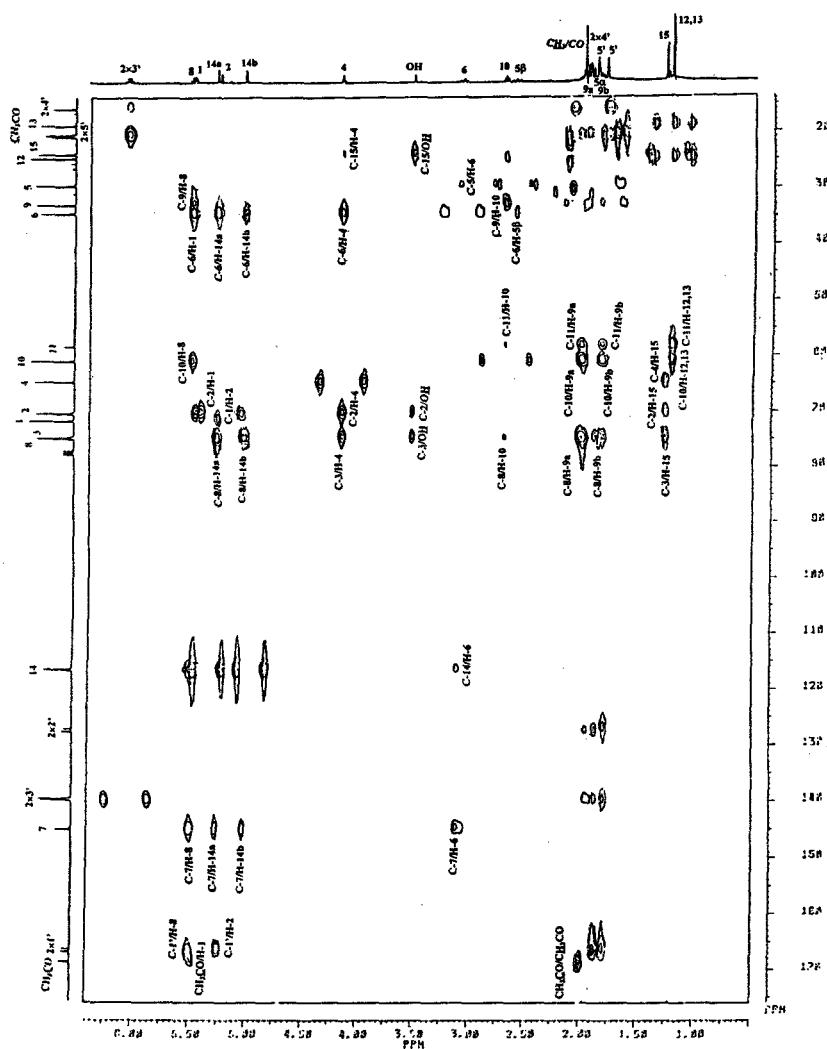


FIG. 4. HMBC spectrum of compound 1

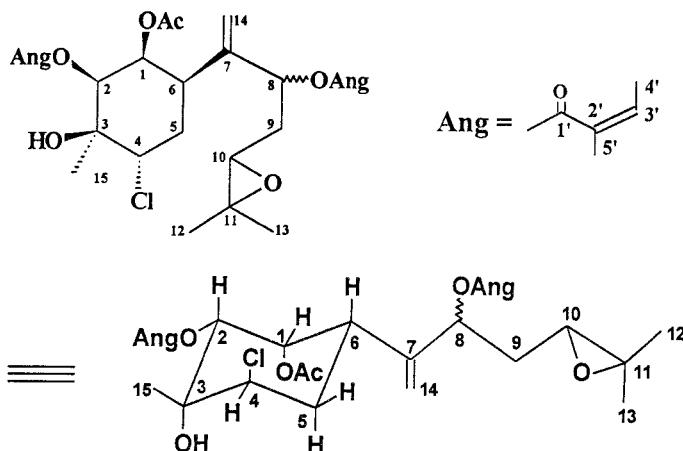


FIG 5. Structure of compound 1

exhibited the position of hydroxyl group ($\delta_H = 3.52$ ppm, exchanged in D_2O) by the cross peaks (FIG 4): $HO/C-2$, C-3 and C-15. Therefore, the hydroxyl group must substitute in C-3 ($\delta 74.3$, C) and thus the chlorine atom in C-4 ($\delta 64.4$, CH).

The stereochemistry of 1 was deduced on basis of the coupling magnitudes, (large vicinal couplings for axial and small couplings for equatorial protons) and $^1H-^1H$ NOESY spectrum. The observed triplet of the C-4 proton, with two small coupling constants ($J_{4,5\alpha} = J_{4,5\beta} = 2.9$ Hz), is in agreement with the C-4 proton in equatorial position. A large coupling constants of the C-6 proton ($J_{5\beta,6} = 13.2$ Hz) indicated the C-6 proton must be in axial position. Another small coupling constants of the C-6 proton with the C-1 proton ($J_{1,6} = 3.0$ Hz) showed the C-1 proton must be in equatorial position and it was confirmed by the small coupling constants of the C-1 proton with the C-2 proton ($J_{1,2} = 3.3$ Hz). The $^1H-^1H$ NOESY spectrum revealed the important NOE cross peaks : H-1 with H-2 and H-6; H-2 with H-6 and H-15. That showed H-1, H-2, H-6 and H-15 in the same side of the ring (shown in FIG 5). Thus the structure of 1 was determined as 1β -acetoxy- $2\beta,8$ -diangeloyloxy- 3β -hydroxy- 4α -chloro- $10,11$ -epoxybisabol-7(14)-ene.

In our isolation process, we did not use chlorhydric acid and did not use chloroform as elution solvents, either. Therefore, we were convinced that compound **1** was a natural product.

ACKNOWLEDGMENT

This work was supported by the doctoral Program of the State Education Ministry of the People's Republic of China and the National Science Foundation of China. The experiment of antibacterial activity was produced by Qing Wang, department of biology at Lanzhou University.

REFERENCES

1. "A Dictionary of Traditional Chinese Drags", Jiangsu New Medicinal College, Shanghai People's Press , Shanghai : 1977; pp.7, 154, 549, 1152 and 2349.
2. Jia, Z. J. , and Cheng, H. M. , Benzofurano sesquiterpenes from *Ligularia virgaurea*. *Phytochemistry* 1991, **30**, 3132-3134.
3. Zhao, Y. , Jia, Z. J. , and Yang, L. , Sinapyl alcohol derivatives and other constituents from *Ligularia nelumbifolia*. *Phytochemistry* 1994, **37**, 1149-1152.
4. Cardoso, J. M., Jakupovic, J., Bohlmann, F. Eremophilane-, Bisabolane- and Shikimic acid-derivatives from Portugese *Senecio* Species. *Phytochemistry* 1987, **26**, 2321-2324.
5. Chen, H., Zhu, Y., Shen, X. M., Jia, Z. J. Four New Sesquiterpene Polyol Esters from *Cremanthodium ellisii*. *J. Nat. Prod.* 1996, **59**, 1117-1120.
6. Ganzer, U., Jakupovic, Bohlmann, F., King, R. M. A highly oxygenated germacrane from *Aspilia eenii* and constituents from other *Aspilia* Species. *Phytochemistry* 1992, **31**, 209-212.
7. Barrero, A. F., Manzanede, E. J. A., Manzaneda, R. A. Bisabolane derivatives and other constituents from *Achillea odorata*. *Phytochemistry* 1990, **29**, 3213-3216.

Date Received: April 9, 1999

Date Accepted: October 10, 1999